Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Rolf H. Prager, ${ }^{\text {a }}$ Jason A. Smith ${ }^{\text {a }}$ and Edward R. T. Tiekink ${ }^{\mathbf{b}^{*}}$
${ }^{\text {a }}$ School of Chemistry, Physics and Earth Sciences, Flinders University, GPO Box 2100, Adelaide, 5001, Australia, and ${ }^{\text {b }}$ Department of Chemistry, The University of Adelaide, Australia 5005

Correspondence e-mail:
edward.tiekink@adelaide.edu.au

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.058$
$w R$ factor $=0.171$
Data-to-parameter ratio $=17.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Ethyl 3-methylimidazo[1,2-a]pyrimidine-2-carboxylate

Two independent molecules comprise the asymmetric unit for the title compound, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$, and these differ in the relative orientations of the ester side chains. Molecules associate via $\pi-\pi$ interactions forming stacks in the crystal structure.

Comment

We have recently reported the conversion of heterocyclyl-isoxazol-5 $2 H$)-ones to imidazoles by flash vacuum pyrolysis (Prager \& Singh, 1993) or photolysis (Prager et al., 1994). While these reactions, particularly the pyrolytic, proceeded in very high yields, in a few cases we noted minor amounts of products arising from rearrangement of the initially formed carbene. For instance, the 3-nitropyridylisoxazolone (1) gave 87% of the imidazopyridine (2), and 11% of the rearranged isomer (3) (Prager \& Singh, 1993).

Received 5 April 2001 Accepted 17 April 2001 Online 26 April 2001
compounds, was much more polar, and was strongly fluorescent. Accordingly, we have determined the structure of the product by single-crystal X-ray analysis, and have confirmed that the product was indeed the imidazole (6). Since this work was completed, (6) has been reported in a patent application in which it was incorporated into the side chain of a β-lactam (Nakai et al., 1993).

The asymmetric unit of (6) comprises two independent molecules, as illustrated in Fig. 1. The major difference between the two molecules is found in the conformation of the ester groups so that the imidazole nitrogen (N1) and carbonyl $(\mathrm{O} 2)$ atoms are anti in molecule A and syn in molecule B. The fused ring system is effectively planar with a mean deviation of $0.002 \AA$ for molecule $A ; 0.013 \AA$ for molecule B. The side chain is coplanar with the aromatic group, as seen in the values of the $\mathrm{O}_{2}^{\prime} A-\mathrm{C}^{\prime} A-\mathrm{C} 2 A-\mathrm{N} 1 A, \quad \mathrm{O} 2 A-\mathrm{C}^{\prime} A-\mathrm{O}^{\prime} A-$ $\mathrm{C} 21 A$ and $\mathrm{C}^{\prime} A-\mathrm{O}^{\prime} A-\mathrm{C} 21 A-\mathrm{C} 22 A$ torsion angles of $176.5(3),-4.0(4)$ and $172.4(2)^{\circ}$, respectively; the comparable angles for molecule B are $-6.0(5),-0.2(5)$ and 168.1 (2) ${ }^{\circ}$, respectively.

The crystal structure is stabilized by $\pi-\pi$ interactions. The average separation between the two five-membered ring systems of the two molecules comprising the asymmetric unit is $3.44 \AA$ and the angle between them is $2.53(7)^{\circ}$. Symmetryrelated five-membered rings of molecule A are separated by $3.45 \AA$ (symmetry code: $-1-x, 1-y, 1-z$) and, similarly, symmetry-related six-membered rings of molecule B are separated by $3.59 \AA$ (symmetry code: $-x, 1-y,-z$). Such an arrangement leads to stacks of molecules approximately parallel to (20 $\overline{2}$).

Experimental

For the preparation of ethyl 4-methyl-5-oxo-2-(pyrimidin-2-yl)-2,5-dihydroisoxazole-3-carboxylate, (4), the isoxazolone (5) (Adembri \& Tedeschi, 1965) ($500 \mathrm{mg}, 2.9 \mathrm{mmol}$) and 2-chloropyrimidine (340 mg , 0.29 mmol) were refluxed in dichloroethane (20 ml) for 16 h . The solvent was removed and the resulting solid was recrystallized from tert-butyl methyl ether to give (4) as yellow needles in 80% yield (m.p. $335-337 \mathrm{~K}$). Analysis found: C 53.01, H 4.45, N $16.86 \% ; \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: C $52.82, \mathrm{H} 4.47, \mathrm{~N} 16.87 \% .{ }^{1} \mathrm{H}$ NMR: $\delta 1.34(t, J=7 \mathrm{~Hz}, 3 \mathrm{H})$, $4.23(q, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(t, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(d, J=5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 7.4(q), 13.8(q), 62.6(t), 109.6(s), 118.3(d), 148.0(d), 156.8$ $(s), 158.5(s), 159.3(s), 168.8(s)$ IR $\nu_{\max }: 1763,1740,1571,1406$, $1237 \mathrm{~cm}^{-1}$. MS m/z: 249 ($M^{+}, 100 \%$), 204 (12), 188 (11), 176 (15), 160 (34), 133 (22), 79 (91), 67 (19), 53 (91). For the pyrolysis of (4); the isoxazolone (4) ($200 \mathrm{mg}, 0.8 \mathrm{mmol}$) was pyrolysed under FVP conditions ($813 \mathrm{~K}, 393 \mathrm{~K}, 0.05 \mathrm{mmHg}, 2 \mathrm{~h}$). A solid was collected from the pyrolysis tube and recrystallized from ethanol to give colourless needles of ethyl 3-methylimidazo[1,2-a]pyrimidine-2carboxylate, (6), in 90% yield (m.p. 468-469 K). Analysis found: C 58.54, H 5.40, N 20.48\%; $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires: C 58.64 , H 5.31, N 20.40%. ${ }^{1} \mathrm{H}$ NMR: $\delta 1.28(t, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 2.65(s, 3 \mathrm{H}), 4.29(q, J=$ $7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90\left(d d, J^{\prime}=7, J^{\prime \prime}=4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.34\left(d d, J^{\prime}=7, J^{\prime \prime}=2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 8.46\left(d d, J^{\prime}=4, J^{\prime \prime}=2 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 8.7(q), 14.1(q), 60.6$ (t), 109.3 (d), 124.7 ($s), 131.6$ ($s), 132.7$ (s), 146.3 (s), 154.2 (d), 163.5

Figure 1
The molecular structure and crystallographic numbering scheme for (6). Displacement ellipsoids are shown at the 50% probability level (Johnson, 1976).
(s). IR $\nu_{\max }: 1702,1503,1196,1086,786,768 \mathrm{~cm}^{-1} . \operatorname{MS~m} / z: 205\left(M^{+}\right.$, $11 \%), 158$ (4), 133 (100), 132 (77), 78 (14).

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \quad Z=4$
$M_{r}=205.22$
Triclinic, $P \overline{1}$
$a=9.910(1) \AA$
$b=11.653(2) \AA$
$c=9.000(2) \AA$
$\alpha=100.93(1)^{\circ}$
$\beta=95.31$ (1) ${ }^{\circ}$
$\gamma=89.24(1)^{\circ}$
$V=1016.0(3) \AA^{3}$
$D_{x}=1.341 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=19.8-22.0^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.32 \times 0.32 \times 0.24 \mathrm{~mm}$

Data collection

Rigaku AFC-6R diffractometer $\omega-2 \theta$ scans
4967 measured reflections
4696 independent reflections
2373 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.059$
$\theta_{\text {max }}=27.6^{\circ}$
$h=0 \rightarrow 12$
$k=-15 \rightarrow 15$
$l=-11 \rightarrow 11$
3 standard reflections every 400 reflections intensity decay: 5.1\%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.171$
$S=1.03$
4696 reflections
272 parameters
H -atom parameters constrained

The H atoms were placed in geometrically calculated positions and included in the final refinement in the riding model approximation with an overall displacement parameter.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997); program(s) used to solve structure: SIR88 (Burla et al., 1989); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

The Australian Research Council is thanked for support.

References

Adembri, G. \& Tedeschi, P. (1965). Boll. Sci. Fac. Chim. Ind. Bologna, 23, $203-$ 222; Chem. Abstr. (1965). 63, 13234h.
Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. \& Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997). TEXSAN for Windows. Version 1.05. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Nakai, E., Koide, T., Yokota, M., Araki, T., Maeda, T. \& Susaki, K. (1993). PCT Int. Appl. WO93-19,072; Chem. Abstr. (1993). 120, 269927 h.
Prager, R. H. \& Singh, Y. (1993). Tetrahedron, 49, 8147-8158.
Prager, R. H., Singh, Y. \& Weber, B. (1994). Aust. J. Chem. 47, 1249-1262.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

